面对最大的技术挑战,我们正朝着在 EVM 兼容环境中部署智能合约开始冲刺。测试网的第一个版本已经上线:您已经可以使用区块浏览器查看 zkSync 2.0 上的活动。在这篇文章中,我们将深入解释每个关键组件、提供进度更新以及下一个版本的计划。
在密码学方面,zkEVM 的指令集已经完成,并且两个实现都完成了:在电路中和在执行环境中。
在编译器方面,用 Solidity 和 Zinc 编写的智能合约现在可以编译成 zkEVM 字节码。
在核心基础设施方面,全节点集成完成,能够成功部署和执行编译后的智能合约。
虽然 zkEVM 和核心 2.0 基础设施已准备好公开,但编译器需要更多的工作来正确覆盖所有边缘情况。为了提供更全面的开发人员体验,我们决定在编译器 100% 可靠后立即开放对 zkEVM、编译器和核心 SDK 的访问。
大多数事情看起来和感觉都一样。以下是一些重要的区别:
Solidity 智能合约
支持以太坊中的大多数操作码!但是,也有一些例外:
此版本不支持 ADDMOD、SMOD、MULMOD、EXP 和 CREATE2 操作码,但将来会支持。
我们暂时不支持 KECCAK256 操作码,而是会自动将其所有调用替换为对另一个抗碰撞哈希函数的调用。KECCAK256 稍后将作为预编译引入。
我们决定不包含 SELFDESTRUCT 操作码,因为以太坊计划将其删除。
Matter Labs将对时间戳、编号和哈希值在zkSync Era上的行为方式进行重要更改:8月8日消息,Matter Labs开发者关系工程师Antonio在Github表示正在对 block.timestamp、block.number 和 blockhash 在 zkSync Era 上的行为方式进行重要更改。目前 block.timestamp、block.number 和 blockhash 分别是返回 L1 批次的时间戳、编号和哈希值,此次更新完成后,将分别返回 L2 区块的时间戳、编号和哈希值。
Antonio 表示,许多应用需要更高的时间 fidelity,这可以通过引用 L1 批次来实现。通过这些更改,合约将能够在 L2 区块级别计时(约每隔几秒生成一次),这些信息已经在 API 上提供,但随着新的更改,开发人员将能够直接在智能合约中进行访问。当前我们正在开发此更改,将在转移到测试网和最终主网之前在内部测试更新过程。[2023/8/8 21:32:37]
我们可能会取消对完整 256 位 XOR/AND/OR 操作码的支持,因为这些仅存在于已编译的用于位掩码的 Solidity 代码中。这可以由编译器使用其他操作码来完成。
费用
在 zkSync 2.0 中,有一个不同的 gas 概念。交易价格将根据当前的 L1 gas 价格(由于发布通话数据)和 ZKP 生成成本而波动。智能合约调用将具有最大数量的 zkEVM 步骤和存储写入参数。
zkSync 2.0测试网出现一个小问题,目前团队正在修复:8月23日消息,zkSync生态DeFi协议Phezzan Protocol发推称,zkSync2.0测试网似乎出现了一个小问题,zkSync团队已经找到了根本原因,目前正在修复。[2022/8/23 12:43:49]
Web3 API
下一个版本将包括我们的 Web3 API 实现,它将与以太坊文档定义的 Web3 标准兼容。事件将开箱即用,所有服务都可以轻松集成。
zkSync 包含 L1 没有的功能,例如已提交和最终块的概念。因此,将有其他方法可以让开发人员更精确地控制数据。Web3 客户端代码将接收与以太坊相同的数据,但可以使用 `zksync_` 命名空间请求特殊信息。
由于 zkSync 有多种交易类型,并且使用 EIP712 签名,因此 `eth_sendRawTransaction` 数据的格式会与 L1 不同。但是,编码对应于以太坊 ABI,因此支持它并不困难。
签署交易
zkSync 2.0 中的交易可以通过两种方式进行授权(除了优先级队列机制):
用户可以通过签署 EIP712 消息,使用他们的普通以太坊钱包(例如 Metamask 或任何 WalletConnect 钱包)签署交易。
任何账户都可以设置公钥来创建我们内部的 Schnorr 签名来签署交易。这允许基于智能合约的钱包与 zkSync 2.0 进行交互,而无需发送 L1 消息的额外成本。
Matter Labs宣布将成立价值2亿美元的DAO组织,帮助扩展zkSync生态系统:1月27日消息,zkSync的开发组织Matter Labs宣布成立价值2亿美元的DAO组织。该组织将由BitDAO支持,将通过公共产品、基础设施、安全框架、研发资助以及对其他加密组织的投资来帮助扩展zkSync生态系统。BitDAO是世界上最大的Token管理财库之一,正在为下一代Web3组织赋能。
此前报道,Matter Labs于2021年11月8日宣布完成5000万美元融资,a16z领投。[2022/1/28 9:18:13]
存储效率提升
每个块仅应用一次存储槽覆盖。这意味着如果多个用户与单个 AMM 合约交互,则 AMM 合约的存储槽只会被覆盖一次。这允许排序器稍后向用户退还单次写入的共享成本。
“预编译”机制是计划中的,但将在稍后发布。我们计划首先支持 keccak256、sha256 哈希和 ECDSA 恢复原语。根据需求和复杂性,可以考虑包含其他预编译,例如 Blake2f 轮函数(以当前形式在以太坊中几乎无法使用)。
进一步的限制
zkSync 2.0 的第一次迭代可能会对每笔交易施加 32 次智能合约调用的额外限制,直到实施适当的记账机制。
执行跟踪将有一个硬性限制,但它与以太坊区块大小的当前限制相当,不应影响大多数协议。
可能还有更多限制,但我们的目标是在最终版本中将它们减少到绝对最小值。
zkSync钱包集成上市支付服务提供商Banxa:12月23日消息,以太坊二层扩容解决方案zkSync宣布与上市支付服务提供商 (PSP) Banxa达成合作,将其法币入口平台与 zkSync 的钱包集成。Banxa 将通过支持 zkSync 的layer 2钱包的直接法币出入金,消除通过以太坊主网进行存款和取款的昂贵中间步骤。(Matters Lab)[2021/12/23 7:58:17]
深入了解 zkSync 2.0 架构
您可能听说过区块链三难困境,但在扩展以太坊时,还有第四个因素:可编程性。所有当前的扩展解决方案都存在于为了可扩展性而牺牲一些安全性、去中心化和可编程性的范围内。zkSync 2.0 的设计结合了以下 2 项技术突破,最大限度地发挥了所有 4 项功能:
zkEVM:为我们与 EVM 兼容的 zkRollup 提供动力的引擎,这是唯一具有 L1 安全性和可靠性智能合约支持的解决方案。
zkPorter:一个链下数据可用性系统,其可扩展性比汇总高 2 个数量级。
(图片来源于zkSync)
由于 zkEVM 和 zkPorter 是可互操作和可组合的,因此 zkSync 2.0 能够显着优于所有其他扩展解决方案。
ZKSwap 即将开放 Layer2 SDK 支持交易所和钱包无缝接入Layer2:ZKSwap官方消息称,ZKSwap平台SDK(软件开发工具包)即将开放,届时将支持USDC、USDT等各类稳定币的免费实时转账。同时,ZKSwap 也将开放公共数据API,支持实时价格、24小时交易量、流动性池信息以及 L2 区块交易记录信息。
另外,ZKSwap 正在进行第二轮流动性挖矿和交易挖矿活动,总奖励超千万美金。据 ZKSwap.info 数据显示,目前 ZKSwap 平台 Layer2 总资产达 5.02 亿美金, 流动性超 3.47 亿美金。[2021/4/5 19:46:28]
目前的共识是Eth2 数据分片将在 2022 年底到来,以在不牺牲去中心化的情况下提供指数级更大的数据可用性层。zkSync 的 zkRollup 技术结合 Eth2 数据分片是最终目标,在不牺牲 4 个因素中的任何一个的情况下达到 100,000+ TPS。
状态树
zkSync 2.0 状态树覆盖了以太坊的完整 160 位地址空间。每个帐户将驻留在状态的 zkRollup 部分或 zkPorter 部分。zkRollup 和 zkPorter 帐户完全相同,除了一个组件:保证数据可用性。zkRollup 交易数据通过 calldata 发布到以太坊,zkPorter 交易数据发布到 zkSync Guardian 网络,zkSync 代币持有者参与权益证明。
数据发布的地方是成本和安全性之间的权衡。zkPorter 交易比汇总交易便宜得多,但它有可能导致您的资金被冻结。但是,zkRollup 和 zkPorter 帐户的有效性都是通过零知识证明和以太坊来保证的。换句话说,zkPorter 中的资金只能被冻结,不能被盗。
zkRollup 和 zkPorter 帐户的互操作性和可组合性使每个用户都有机会成为 zkSync 中的一等公民。部署在 zkRollup 端的 Uniswap 可以通过 zkPorter 帐户访问以交换最低费用。zkSync 2.0 是一个系统,旨在供整个金融领域的用户参与。
密码学
我们的 VM,最常被称为 zkEVM,不是 EVM 1:1 副本,而是旨在能够运行 99% 用 Solidity 编写的合约并保持其相同的行为,例如在恢复和异常期间。同时,zkEVM 被编写为在电路中高效生成零知识证明。
这是在我们的证明系统没有任何重大变化的情况下完成的;我们继续将 PLONK 与自定义门和查找表(通常称为 UltraPLONK)以及以太坊的 BN-254 曲线一起使用。这是有利的,因为自 2020 年 6 月以来,该证明系统已经在 zkSync 1.0 以及使用相同证明系统的其他项目中进行了实战测试。
再一次,我们很高兴地宣布,经过几个月的努力:zkEVM 的指令集已经完成并在电路和执行环境中实现。
这里有一个重要的区别:电路和执行环境中的实现是分开的,用于不同的目的。电路的工作是生成执行跟踪的证明并提供证人,但这非常慢。另一方面,执行环境是 zkEVM 在 rust 中的直接实现,高效且快速。如果我们依靠电路来生成证明和执行,交易最终确定将需要几个小时。证明生成和简单执行的分离使 zkSync 上的交易能够即时结算。
接下来,我们专注于将 zkEVM 和编译器结合在一起,并将递归结合在一起:块之间的递归,它允许我们为 N 个块发布一个证明,以及块内的递归,它聚合块的不同逻辑部分的子证明. 这是简单的部分!自 2020 年 6 月以来,zkSync 1.0 的主网上已在使用区块之间的递归聚合证明。有关区块内递归以及我们的 zkEVM 工作原理的更多信息,请观看此视频说明。
编译器
(图片来源于zkSync)
我们同时致力于两个针对 zkEVM 的编译器前端:Yul 和 Zinc。Yul是一种中间 Solidity 表示,可以为不同的后端编译为字节码。Zinc是我们用于智能合约和通用零知识证明电路的基于 Rust 的语言。
由于编译器是使用LLVM框架构建的,因此可以将其视为具有前端 Yul → LLVM IR 和后端 LLVM IR → zkEVM 字节码。LLVM 的采用带来了几个主要优势:
LLVM 优化框架无与伦比:它从 LLVM IR 生成最高效的 zkEVM 字节码。
使用较新版本的 Solidity 或 Zinc,编译器前端将处理所有更改,而 LLVM 将使我们无需更改编译器后端。
未来,如果开发人员想用原生 Rust 或 Javascript 编写智能合约,只需为该语言构建编译器前端,智能合约就可以在 zkSync 中开箱即用。
编译器的安全性对我们来说至关重要,并且已经通过了多套测试:
Zinc 和 Yul 编译器中的词法、语法和语义测试。
我们自己的Zinc 和 Solidity集成测试,贯穿整个智能合约生命周期:从解析源代码到合约部署和在 zkSync 上执行交易。
从 Solidity 存储库集成的广泛的测试套件,适用于我们的集成测试工具。
每个套件已经包含数千个测试,我们将把这个数字至少增加一个数量级。
我们的 2 个编译器已经成功部署并执行了两种语言的简单智能合约。但是还有更多的优化需要完成,一些复杂的 LLVM IR 语句需要转换为 zkEVM 字节码。因此,我们决定在编译器处于更健壮的状态之前不发布它。
编译器完成后,我们将专注于使Zinc更具表现力和功能更丰富,然后构建 Rust 编译器前端以允许使用原生 Rust 编写智能合约。
核心基础设施
zkSync 2.0 核心由几个关键角色组成:
完整节点
通过虚拟机的 zkEVM 字节码的预电路执行器环境
该状态在交易发送后的几秒钟内可用,
过滤掉可能导致区块膨胀的明显不正确的交易(例如,交易资金不足),
在内存池中执行交易并生成区块。
证明者
接收区块的见证人并生成零知识证明,
用于并行证明生成的证明者接口,
自定义证明者自动缩放器,可根据需要创建和终止证明者机器。
交互器
用于观看和与以太坊 L1 交互的工具,
根据代币价格、ZKP 生成成本和 L1 gas 价格计算交易费用。
偏执监视器
Prometheus、elastic、sentry、uptime、几个独立的事件通知系统和自定义健康检查服务。
这个核心基础设施功能齐全,已经集成了 zkEVM 执行器。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。