量子计算机会如何影响比特币?自从量子计算的热潮开始以来,椭圆曲线加密技术就受到了密切关注。比特币用加密证明代替第三方信任,但不仅仅是比特币如此,比如最常见的两种密码系统:不对称密码算法(RSA)和椭圆曲线加密技术(ECC)也使用了加密证明。当你在线交流时,你传输的所有信息都会使用RSA或ECC加密。但这两种密码系统易受量子计算机的威胁。大型的量子计算机将是所有在线交互用户不可忽视的安全隐患。
如果量子计算机足以破坏赖以加密技术建立信任的数字货币,情况会怎样?加密货币的实现细节以及交易所和钱包的交易处理模式,可能会影响量子计算对货币潜在破坏的严重程度。
今天的加密技术和Shor的算法的影响
加密技术的工作原理是在一条信息上应用一个数学公式,并将信息打乱,只有你授权的人才能看到这条信息。信息的安全性依赖于在没有密钥的情况下“解开”数学问题的难度。
例如,RSA依赖于要因式分解的难题。两个素数相乘比较容易计算,但是取一个大数并因式分解得到这两个素数就困难了。用传统计算机分解一个4096位的密钥的计算时间要比宇宙的年龄还要长。
比特大陆PoW研究院院长:一旦量子计算机出现,比特币也可以有应对方案:金色财经报道,在由比特大陆联合金色财经举办的《比特币诞生14周年》主题活动上,比特大陆PoW研究院院长Lucien表示,一旦量子计算机出现,比特币也可以有应对方案,就是重新创建一个地址,之后把签名的算法改成抗量子的密码算法, 目前比较常用的几种数学方案构造的密码算法,有基于哈希的密码学,基于多变量的密码学(里面最著名的就是彩虹密码),格密码等等技术。到时候大家把钱打到新的地址里就可以了。据称,需要2000个逻辑量子比特才能破解当今主流的RSA加密算法,而现在最强大的量子计算机(Osprey)也才433个物理qubit,相当于几个逻辑量子比特的能力,距离破解比特币还差得很远,所以我们有充足的时间去准备。
比特币的确会有应用性的缺失,我们都知道以太坊有智能合约,正是因为复杂的智能合约的存在,所以就会存在了很多潜在的漏洞风险,进而会存在硬分叉的可能,所以比特币越简单,他的货币稳定性的价值更能凸显出来。[2023/1/3 22:23:27]
然而,量子计算机的计算方式与传统计算机不同。Shor的算法可以找出某个数的质因数,并且比传统计算机更容易地“解开”因式分解难题。也就意味着一个拥有足够大和足够连贯的量子计算机的人,理论上可以从公钥计算出你的私钥。这是一个严重的威胁,因为私钥是不能与任何人共享的,私钥可授权所有者拒绝的交易。因此,随着量子计算机的发展,RSA的安全性将失效。
摩根大通工程师:量子密钥分发网络可保护区块链免受量子计算攻击:2月17日消息,来自摩根大通公司、东芝公司和Ciena公司的一组量子计算工程师发布论文表示,他们已经证明,新开发的量子密钥分发(QKD)网络,可用于保护区块链上的通信。量子密钥分发是一种由量子物理学驱动的超安全双向通信网络,作为保护区块链免受量子计算攻击的一种方式。(metro)[2022/2/17 9:59:09]
RSA从1977年就出现了,沿用至今。后来,ECC取代了RSA,因为前者的密钥更小和速度更快。然而,Shor的离散对数量子算法也威胁到了ECC。
量子计算机的研究突破和发展速度引发了人们对RSA和ECC系统长期安全性的怀疑。2015年,出于对量子计算攻击的担忧,美国国家安全局指出,自己将用抗量子算法取代“Suite B(加密支持)”密码。2019年1月,NIST公布了26种可能抵抗量子计算机攻击的算法。尽管有一些是可行的候选方案,我们还是需要使用新的加密算法,但由于加密货币在实现上面临前所未有的挑战,标准也未统一,这会加大加密货币的算法过渡难度。多大的量子计算机可以打败比特币?
多大的量子计算机可以成为比特币杀手呢?微软的研究表明,解开椭圆曲线离散对数所需的量子位比需要4000量子位的2048位RSA还要少。然而,这些都是完美的“逻辑”量子位。由于误差校正和其他必要步骤,我们需要更多的物理量子位。John Preskill在他的量子信息讲座中提到,一个标准的256位密钥大约需要2500量子位,破解这个密钥需要1000万个物理量子位的和1万个逻辑量子位的量子计算机。
声音 | Hedera创始人:量子计算只是加密技术的“千年虫问题”:据Decrypt今日消息,Hedera Hashgraph创始人Leemon Baird消除了人们关于量子计算对加密货币的影响的担忧,在2019年全球网络峰会上发表讲话时,他将其比喻为Y2K(千年虫问题),也就是程序员在世纪之交解决的日期格式化问题。[2019/11/8]
目前的量子技术距离这个里程碑还相差甚远。IBM宣布他们在2017年底实现了一个50量子位的系统;谷歌在2018年初宣布实现72量子位;使用离子阱的IonQ公司,发布了一款包含160量子位元的量子计算机,并对其中的79量子位执行了运算;DWave发布了自己2048量子位系统,然而,它是一个量子软化装置,不能用于Shor的算法。
最终要建立的是足够大型的量子计算机用于化学、优化和机器学习。不过,虽然目前能够完成这些任务的大型量子计算机还遥不可及,但正在流通当中的加密货币日后可能会受到这类量子计算机的影响。
量子计算机对加密货币的影响
需要考虑一大问题是,量子计算机可以用交易期间公布的公钥,计算出签署交易的私钥,允许未经授权的交易。如何才能弱化量子计算机对加密货币的影响?加密货币的几大弱点让量子计算机有机可乘。
动态 | 以太坊3.0计划浮出水面,抵御量子计算攻击成为重点:在上周举办的Ethereal以太坊峰会上,以太坊协议研究者Justin Drake首次公开介绍了以太坊3.0的概念,而这对于以太坊平台而言,将是抵御量子计算威胁的重要计划。由于以太坊2.0计划有多个阶段需要实施(而且实施难度非常大),以太坊3.0计划的实施被初步推迟到了2027年。[2019/9/23]
暴露的公钥
首先,恶意的参与者需要找到公钥。虽然钱包地址是基于公钥的,但经过算法哈希,当前不易受到量子计算的攻击。但是现在交易当中,公钥是公开的。
代币所有者通过对前一个交易的哈希和公钥进行签名,并将它们添加到链的末端,完成转移代币到另一个地址的授权。最简单了解一笔交易情况的方式是查看它的运行代码。我们应用了pybitcointools来显示交易步骤。
简化的步骤:
1.创建私钥
2.从私钥生成公钥
3.要进行交易,你需要使用私钥签署交易。
4.当你读取tx2时,你将在tx2中看到公开的公钥(以' 0420f34…'开头)
5.推广交易
IBM大中华区董事长陈黎明:在区块链、量子计算领域,IBM当仁不让:IBM大中华区董事长陈黎明在谈到IBM新一轮的转型时表示:“IBM这一轮的转型始于五年前,当时定义转型目标时是说我们要向云计算、大数据、移动、社交、安全这几个领域转型。随着人工智能重新兴起,区块链、量子计算的潜力被认识,IBM也当仁不让,因为IBM在这些方面有深厚的技术积淀。”[2018/3/13]
虽然每笔交易都会公开公钥,但要传统计算机略过上述步骤,获得私钥要花费的时间比宇宙的年龄还要长,因此目前是安全的。
分层确定性钱包现在是大多数成熟交易的标准。这种钱包允许你有很多钱包地址。一旦使用私钥进行交易,所有代币都会转移,而私钥不再有效。也就说只能在确认阶段拦截这些代币。
重用钱包地址
除了椭圆曲线的脆弱性,你的代币的安全性取决于交易本身。并不是所有的钱包都使用分层确定性钱包,现在的大多数交易并不重用地址。如果重用地址,就能用私钥再次签署交易。也就是可以用私钥恢复过去很长一段时间的交易,现在又可以用这个密钥来转移代币。
快速攻击
即使我们并没有重用地址,交易期间仍有可能发生代币拦截。理论上而言,有人可以做到。
只要交易还没被确认,就有可能被攻击。对于量子计算机来说,有足够时间来重新变更交易。克雷格·吉德尼和马丁·埃克拉在2019年5月发表了一篇论文,研究如何用2000万噪音量子位在8小时内分解2048位的RSA整数。
2019年6月比特币交易的平均确认时间为9.47分钟。然而,曾经有一段时间,平均确认时间飙升至11453分钟——超出7天!
在一个大型的量子计算机能够恢复密钥的世界中,你能做的就是发送更高的交易费,并将交易重定向到你的钱包。
防止量子计算机恢复密钥的方式是,对真正所有者设定非常高的交易费用。然而,低费用是加密货币的一大卖点,高昂的手续费会阻碍加密货币的使用。
丢失的代币
理想情况下,我们需要在大规模量子计算机问世之前,就计划向新的密码系统过渡,并让用户在发生验证所有权风险之前,成功转移自己的代币。一段时间之后,原来的椭圆曲线加密失效,整条链的价值将趋于0。这样避免了量子计算机后面获取和操纵代币的情况。
但大家都知道,一些比特币已“永久丢失”了。某种程度上,这些比特币所有者失去了对私钥的访问权,而授权交易和花费离不开私钥。
可能部分丢失的代币发生在重用钱包交易中,因此这些代币可能还比较脆弱。如果可以访问公钥,可以用Shor的算法可以找回一些代币。
如果找回丢失代币的人立即出售代币,就可能造成币价暴跌,削弱市场对该系统的信心。并引发其他问题。既然比特币的数量有限,那些丢失的比特币会被重新发行吗?还是说上限会降低?
后量子算法
如果继续使用基于椭圆曲线的密码系统,就会出现上述问题。但随着量子计算能力的增强,如果我们改变从私钥创建公钥的算法,就可以避免这些问题。但需要有一个算法表明它能经得起量子攻击。
我们称这种算法为“后量子密码学”。国家标准与技术研究所(NIST)一直在努力评估和标准化后量子加密方法,因为他们迫需一个新代替方案取代容易受量子计算机攻击的加密支持。
加密货币当前真正探索不同的密码系统。一种方法是使用对称加密技术,它比非对称加密技术更不易受到量子计算攻击。Fawkescoin正在试图证明对称密码系统下的分布式网络的可行性。其他方式有,比如抗量子账本,使用基于哈希的密码技术。到目前为止,基于哈希的密码系统能够抵抗目前已知的量子计算机攻击。
后量子时代的未来
很难预测未来的技术。因此,量子计算很可能不是唯一将加密货币和安全置于危险境地的技术。有时,只需一次技术上的飞跃,我们就能突破一个新未知领域。这样可能需要多次更新加密技术才能做到。
技术上不会改变的一点是,总会有进步和新突破,即使我们不知道它们将是怎样的突破。萨帕塔计算公司发表了一篇关于变分量子因式分解(Variational Quantum Factoring)的论文,论文中指出使用混合(与经典计算机一起工作)噪音中型量子(Noisy Intermediate Scale Quantum,简称NISQ)设备也许能有所突破,该设备只需要几百个量子位来分解因数。当然,这种新技术还没有经过测试,也有局限性。然而,还有很多新的算法和探索的空间,可能会改变当前局面。
量子计算机可能永远无法扩展到2500逻辑量子位。然而,除了运行Shor的算法外,这种大小的量子计算机可以解决许多改变生活的问题。谷歌一直在使用量子模拟来探索化肥生产效率问题,全球的化肥要消耗1%-2%的能源。量子计算机用户数量的增加肯定会加深对世界经济、和社会问题的影响。
一些行业,比如加密货币,量子计算机可能会威胁到它们的长期生存。但我们不能停止进步,技术可以也将被用于造福人类。一旦椭圆曲线加密真的被破解,我们将面临比丢失比特币更大的问题,因此了解量子技术和准备应付量子的安全问题将至关重要,我们不能因为恐惧而阻止科技带来的积极影响。
原文:https://medium.com/quantum-bits/when-can-a-quantum-computer-destroy-bitcoin-a10cbac911da
稿源(译):https://first.vip/shareNews?id=2319&uid=1
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。