何以突出重围?初创公司Cohere获2.5亿美元融资_HER:WEATHER价格

随着OpenAI推出ChatGPT在人工智能领域掀起的千层浪,生成式AI开始被普罗大众所熟知。《日本经济新闻》在此前报道中指出,全球100多家大规模生成式AI企业总市值达480亿美元,约为2020年的6倍,OpenAI的确引领了市场对生成式AI企业的投资热潮。

实际上,除了OpenAI,AI的发展浪潮中还有Jasper、DeepMind、Stability、Cohere等竞争者。5月3日,《纽约时报》报道称,两名知情人士透露Cohere已获2.5亿美元融资,估值约20亿美元,投资者包括互联网软件巨头Salesforce、芯片制造商Nvidia、多伦多风投公司Inovia Capital和硅谷公司Index Ventures。这是自2022年ChatGPT发布后在生成式AI领域的最新重大投资。而此前,Cohere筹集的总资金已达1.7亿美元,包括2022年由Tiger Global领投的1.25亿美元B轮融资。

“百舸争流,奋楫者先;千帆竞发,勇进者胜”。作为加拿大的一家初创企业,Cohere何以突出重围,斩获众多投资者的青睐?了解该企业的发展历程、其产品区别于ChatGPT的独特优势后,相信我们会对投融资市场风向的选择理由与生成式AI的发展动向有所理解。

创立于2019年的Cohere是一家自然语言处理 (NLP) 公司,基于大型NLP模型为外界提供API服务,从而提高计算机理解和生成文本、阅读和写作的能力。该公司由艾丹·戈麦斯 (Aidan Gomez) 与两个朋友Nick Frosst和Ivan Zhang一起创办,它的总部位于加拿大多伦多,在美国旧金山、英国伦敦均设有办事处。自合作以来,他们组建了一支约135人的团队,目前还在继续扩建以更好的提供相关API服务。

过去1小时全网爆仓近2亿美元:金色财经报道,据 Coinglass 数据显示,过去1小时全网爆仓1.96亿美元。其中比特币爆仓7340万美元,以太坊爆仓2489万美元。[2023/6/6 21:17:39]

两位联合创始人Aidan Gomez和Nick Frosst曾担任过谷歌研究员,其中Aidan Gomez是大名鼎鼎的《Attention Is All You Need》论文的作者之一。该论文提出了一种新的、被誉为ChatGPT的“祖师爷”的网络架构“Transformer”,ChatGPT通过Transformer模型进行了序列建模,并通过自回归方式进行训练,使得大语言模型能够根据前文内容和当前输入,生成符合语法规则和语义逻辑的拟人化内容,这使得国内外都掀起了一波未平一波又起的大规模语言模型训练的热潮。

Cohere提供了与ChatGPT类似的产品,目前主要包括:搜索文本(多语言嵌入、神经搜索、搜索排名)、分类文本和生成文本三大类产品,帮助企业快速部署对话式AI聊天机器人、生成式搜索引擎、文本摘要总结、增强向量搜索等,是为数不多在技术层面具备与OpenAI进行竞争的AI企业之一,这也是其受到资本市场青睐的重要原因之一。

Stepn官方为VC、顾问和团队解锁6120万枚GMT:金色财经报道,据Lookonchain监测数据显示,5小时前,/img/2023525184525/2.jpg">

相较于Open AI不断深耕至今走向AI的前沿,曾经颇具影响力的谷歌BERT似乎从一开始就走向了“岔路”。当我们以年为单位看LLM发展史的时候,忍不住唏嘘“在大模型没有成功之前,一切都是场局”。

大语言模型发展进化史

2017年的时候,谷歌研究员在《Attention is all you need》一文中介绍了Transformer架构——这也是目前最常用到的架构之一,是BERT、GPT等预训练模型的基础。时至今日,Transformer架构仍是GPT模型的基础架构。

Transformer架构的提出和预训练的方法将大语言模型推向了新的阶段——以谷歌为首的科技大公司在2017年后聚焦于研发能够处理多种自然语言任务的大模型。

2018年6月,OpenAI采用Transformer架构发布了它们的模型——GPT-1。紧接着,谷歌正式向世界介绍了全新预训练模型——BERT。

时间来到2019年,微软宣布与OpenAI达成10亿美金的合作。次年9月,OpenAI授权微软使用GPT-3模型,微软成为全球首个享用GPT-3能力的公司。

科技巨头Meta当然也不甘示弱,于2022年推出有着“开源版本的GPT-3”之称的OPT,并于今年推出能在单个GPU上运行的大语言模型LLaMA。

如今GPT-4也已发布,更强的文本生成能力与详细的逻辑判断能力让OpenAI在四年内快速崛起,并成功“破圈”。

Cohere的联合创始人Nick Frosst对Altman认为大模型不会永远奏效的观点也是表示认同的,他表示“有很多方法可以让Transformer变得更好、更有用,而且很多方法并不涉及向模型添加参数”。Frosst还说,新的AI模型设计或架构,以及基于人类反馈的进一步优化,将会是许多人工智能研究人员已经在探索和有前途的方向。

一些有前景的LLM用例

利用LLM大模型可以做许多“很酷”的事情,但我们必须承认,基于人类实际需求的创新发展方向才是最根本的逻辑,所以“实用主义”是我们考量LLM应用的重要指标。

对于到底是选择只经过预训练的大模型LLM,还是在此基础上经过特定数据集微调后的较小模型问题,《在实践中利用大模型的力量》这篇论文给出的答案是具体情况具体分析,我们可以参照这张决策流程思维导图来获得一些启示。

各种基于LLM构建的应用程序在不断刷新我们的认知,计算机科学家Chip Huyen在其文章《为生产构建 LLM 应用程序》中为我们提供了一些有前景的LLM用例:

人工智能助手:针对不同用户群体来构建不同的任务,比如安排日程、做笔记、预订航班、购物等。但是,最终目标是打造一个可以帮助你做任何事情的智能助手。

聊天机器人:聊天机器人在API方面类似于人工智能助手。如果说人工智能助手的目标是完成用户交给它的任务,那么聊天机器人的目标更多的是成为一个伴侣。例如,你可以让聊天机器人像名人、电影角色、作家等一样说话。

学习:ChatGPT不仅可以生成问题,还可以评估学生输入的答案是否正确,以及对论文进行评分和反馈。同时,它也很擅长在同一个辩论话题上采取不同的立场,可以成为学生很好的辩论伙伴。

搜索引擎优化:如今,许多公司都依赖于创造大量内容,希望在谷歌上排名靠前。但在未来,搜索引擎优化可能会变得更像一场猫捉老鼠的游戏:搜索引擎会想出新的算法来检测人工智能生成的内容,而公司则会更好地绕过这些算法。人们可能也会减少对搜索的依赖,而更多地依赖品牌(例如,只相信某些人或公司创造的内容)。

除此之外,大语言模型可以帮助生命科学研究人员更好地理解蛋白质、分子、DNA和RNA,帮助信用卡公司进行异常检测和欺诈分析以保护消费者,帮助法律团队进行法律释义和抄写等。

在未来的模型面前,或许现在我们看到的大模型只是蝼蚁。但我们可以期待,未来更加强大的语言模型将会更彻底改变人们的生活方式。

现在,我们可以看到越来越多的企业涌入AI的洪流,个体也不可避免地主动参与或者被席卷进去,我们永远不知道明天会发生什么。未来的另一个五年又会有多少大语言模型出现,谁又将冲在行业最前端呢?让我们拭目以待。

元宇宙之心

企业专栏

阅读更多

金色荐读

金色财经 善欧巴

迪新财讯

Chainlink预言机

区块律动BlockBeats

白话区块链

金色早8点

Odaily星球日报

MarsBit

Arcane Labs

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

水星链

[0:15ms0-0:933ms