前言
上一篇分享了“模运算”相关的知识,并且计算了一些有限域的例子,这一篇我们讨论在通用零知识证明中经常提到的椭圆曲线和双线性配对。椭圆曲线作为双线性对的基础和前置知识,我们首先介绍一下其在实数域上的表现形式,然后通过计算的方法列出”F_101”和其扩域“F_101^2”上的全部元素的列表。
椭圆曲线相关知识---曲线方程
椭圆曲线的一般形式的方程其实比较复杂,称为Weierstrass方程,形如下面的形式:
我们先将a,b,c,d,e随意的取值为1,2,3,4,5,并通过画图来查看曲线在直角坐标系上的表现形式。根据二次方程求根公式,我们将其变换为x关于y的函数
稳定币crvUSD科普创新清算机制LLAMMA,可在抵押品价格下跌时逐步替换为稳定币:1月17日消息,Curve官方科普其稳定币crvUSD创新的清算机制LLAMMA,解释了LLAMMA通过AMM的特性进行针对债务人更友善的清算方式,让抵押品在价格下跌时逐渐转移成稳定币,让原本要清偿的债务有一定程度的稳定币可以偿还,同时在价格回稳时再逐渐把稳定币换回抵押品,而不是直接的触发清算导致债务人的亏损。
此前报道,2022年11月23日,去中心化交易平台CurveFinance开发者发布Curve即将推出的去中心化Stablecoin“crvUSD”的官方代码和白皮书。[2023/1/17 11:17:13]
根据方程作图如下:
现场 | 火币中国推出数字经济及区块链产业科普新书:金色财经现场报道,12月6日,由海南省工业和信息化厅主办,南南合作金融中心协办,海南生态软件园、火币中国承办的“海南自贸港数字经济和区块链国际合作论坛”在海口举行,这是全球首次区块链部长级论坛。
在本次论坛上,火币中国举行了“数字经济及区块链产业科普系列新书发布”仪式,希望通过教材、专业教育、培训等多种方式,帮助从业者、高校、研究机构深入了解区块链,从而建立起区块链全局性知识模型,真正推动区块链应用落地。火币中国CEO袁煜明介绍,将联合机械工业出版社面向普通高等教育推出《区块链导论》、《区块链系统设计与应用》和《区块链新商业模式分析》系列教材,这是国内最早推动的区块链教材之一;火币中国还积极参与数字经济的研究,由中信出版社出版的新书《读懂Libra》已经上市;由火币中国负责编写的区块链技术科普读物《区块链技术进阶指南》将于12月面世;首本行业内最全的区块链应用案例集《区块链产业应用100例》在本次论坛进行了首次刊印。[2019/12/6]
根据上面的方程和作图过程了解道,曲线由上下两个半支组成,关于y=0.5对称。
对称的总是美的,但是这个曲线却有一点瑕疵,他的对称轴并不是x轴而是y=0.5。考虑到Weierstrass太过复杂,人们更经常使用的是在Weierstrass方程的基础上进行一些坐标变换和参数化简后的形式。新的形式关于x轴对称。
动态 | 美国演说家Anthony Robbins开始科普什么是比特币:美国演说家安东尼·罗宾(Anthony Robbins)在自己的网站上发布了一篇比特币的科普文章,并在推特上向自己的粉丝介绍什么是比特币,目前他的推特账户共有粉丝304万人。[2019/1/1]
当取a=0,b=3时,画出曲线如下图,容易验证是曲线上一点,对称的也是。
通过方程我们画出了曲线y^2=x^3+3的图像,但是说这就是椭圆曲线的图像其实并不准确。准确地说,我们画的是在实数域上这个方程的图像。在复数域上当然有更多的点也满足曲线方程但是我们的图像中并没有体现,例如。如果把曲线看作点的集合,那数域的扩张直接影响到我们要讨论的这个集合的大小,这在本文后半部分我们还会看到。
声音 | 火星人朋友圈科普RAM:火星人在朋友圈发文称,“什么是RAM?简单来说就是EOS这个国家的土地,所有的经济行为都离不开土地。只要EOS的BP们能投票形成一个稳定的供给预期,并且不改变目前的Bancor算法,那么RAM后续的价格有可能会像北上广深的房价走势。房价下跌不行,房价过快上涨也不行,EOS的生态越来越像某国了,真有意思。”[2018/7/6]
另外为了让其拥有更多的性质,我们认为椭圆曲线其实还包括一个“无穷远”点。这个点在图中并不能体现出来,我们也不能以直角坐标的形式写出这个点的坐标,但是当我们说椭圆曲线时默认其点的集合中包含这个点。“无穷远点”一般用"O?"表示。
椭圆曲线相关知识---点的运算
就像讨论“F_7”时那样,有了元素的集合还需要有在集合上的运算。这条曲线就是椭圆曲线点的集合,但是为了构建密码算法还需要定义点的运算。不同于域中需要两种基本运算,这里我们只需要定义一种特殊的基本运算就可以,不妨将这种运算称作加法,用“+”表示。
通过几何意义可以清楚的理解这种运算的定义,例如我们选取了曲线上的两个点A和B计算加法,把A+B的结果记为C,过程如下:
中科院自动化研究所将面向大中小学生开展区块链等主题的科普讲座:5月21日,新华网讯,今年,中国科学院自动化研究所将举办第十四届“自动化之光”公众科学开放日活动。届时,自动化所将面向大中小学生分别开展《脑与智能》、《区块链技术与平行智能》、《大数据时代的视觉智能》、《动画真奇妙》等4个主题报告,用实例和生动的演示深入浅出地为大家揭示智能技术的原理和奥妙。[2018/5/21]
1)过AB做直线,交曲线于T;
2)过T做x轴垂线,交曲线于C点,C即为所求;
需要说明的是,当两个“加数”位置的点为同一个点时,步骤一中所做的其实是过该点的切线。另外,当AB的连线本身就垂直于x轴时,我们规定AB和曲线的第三个交点是无穷远点“O”。
在这样的规则下容易发现,任何点P都有一个对应的P’,使得P+P’=O;并且任何点A和O的运算的结果都是A本身。而且因为连线AB和连线BA其实是同一条直线,因此我们也能够得知这里定义的点的加法是满足交换率的。
根据定义再结合一些解析几何的知识,就可以求出点加法的坐标计算公式。例如假设A和B的坐标分别为(Xa,Yb)和(Xa,Yb),那么C点坐标如下:
其中"λ"是直线AB连线的斜率,或者当A、B重合时是A点的切线斜率。
现在我们将转而讨论有限域上的椭圆曲线,其上的椭圆曲线表现为一些散布的点。在有限域上A+B虽然已经没有明确的几何意义,但是有同样的计算公式。我们已经验证过是椭圆曲线上的点,那么我们就把该点记为G,并且从该点开始,计算G,G+G,G+G+G...看看会有怎样的规律。
以G+G为例,我们进行演算,首先计算λ,也就是G点的斜率:
然后计算C点坐标:
因此G+G的坐标为。而G+2G稍稍有不同,主要是λ需要从切线斜率修改为过AB的直线斜率:
因此我们也计算出G+2G=3G的坐标,以此类推进行计算,我们得到下表
读者可以选择表中的点,例如(32,42),来验证其是否在曲线上,也就是是否满足曲线方程y^2=x^3+3mod101,相关演算我们不在本文赘述。
经过计算和验证可以发现,这一系列点构成了一个周期为17的循环。如果我们将k个G相加记为kG,并且将O看作0G,那么有17G=O。这像极了模17加法的规律,并且在模17加法和为0的两个数对应的两个椭圆曲线点的和正好是O,我们说这样的17个点和加法一起构成一个有17个元素的循环群。因为这只是一篇科普性质的文章,我们不给出循环群的严格定义,但是正如它的名字中强调的“循环”,循环群最突出的性质就是能够由某个元素不断运算从而得到全部。
需要强调的是这17个点并不是F_101上椭圆曲线的全部,但仅利用这17个元素组成的集合我们已经能够在其中完成点的加法运算,也就是说任意选择集合中两个点进行加法,其结果不会跳出到集合之外。
在本篇最后,我们展示17个点在直角坐标系中的分布,读者可以体会其中的对称之美。下一篇我们将找到另一个17个元素的循环群并且在其基础上计算双线性映射,敬请期待。
附录
▲表2:模101元素逆元表
乔沛杨
趣链科技基础平台区块链底层密码学小组
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。