金融圈注意了 BloombergGPT来了_GPT:Blockmax

ChatGPT引爆的AI热潮也“烧到了”金融圈,彭博社重磅发布为金融界打造的大型语言模型——BloombergGPT。

3月30日,根据彭博社最新发布的报告显示,其构建迄今为止最大的特定领域数据集,并训练了专门用于金融领域的LLM,开发了拥有500亿参数的语言模型——BloombergGPT。

报告显示,该模型依托彭博社的大量金融数据源,构建了一个3630亿个标签的数据集,支持金融行业内的各类任务。该模型在金融任务上的表现远超过现有模型,且在通用场景上的表现与现有模型也能一较高下。

一般来说,在NLP领域,参数数量和复杂程度之间具有正相关性,GPT-3.5模型的参数量为2000亿,GPT-3的参数量为1750亿。

美众议院金融服务委员会主席邀请SBF参加12月13日的听证会:金色财经报道,美国众议院金融服务委员会主席Maxine Waters在周五的一条推文中称赞SBF关于FTX崩溃的“坦率”评论,并邀请他参加12月13日的委员会听证会。她说,“我们感谢您在讨论FTX发生的事情时坦诚相待,你愿意与公众交谈将有助于公司的客户、投资者和其他人。为此,我们欢迎您参加我们13日的听证会”。Waters委员会将于本月晚些时候就FTX崩溃举行首次听证会。

民主党主席兼共和党众议员Patrick McHenry表示,他们希望听到SBF和其他参与这场崩溃的人的讨论,包括Alameda Research前高管和竞争对手交易所币安的代表。[2022/12/3 21:19:28]

关于BloombergGPT

报告指出,研究人员利用彭博社现有的数据,对资源进行创建、收集和整理,通过构建迄今为止最大的特定领域数据集来完成BloomberGPT,并基于通用和金融业务的场景进行混合模型训练:

金融稳定委员会:关于全球稳定币监管的建议仍处于早期阶段:金色财经报道,金融稳定委员会(FSB)周四发布了一份报告,从2020年10月开始实施其关于监管稳定币数据保障的10项\"建议\"仍处于\"早期阶段\"。金融稳定委员会在声明中说:\"各司法管辖区已经采取或正在考虑采取不同的方法来实施这些建议。为了解决监管套利和有害的市场分裂的风险,以及稳定币进入金融系统主流后可能出现的更大的金融稳定风险,有效的国际监管合作和协调至关重要。建议的范围包括赋予有关当局对全球稳定币的监管,以及一个综合治理框架,因为它涉及到与主权法定货币1:1挂钩的加密货币。”(Coindesk)[2021/10/7 20:11:05]

彭博社主要是一家金融数据公司,数据分析师在公司成立的四十年的时间里收集了大量的金融文件,拥有广泛的金融数据档案,涵盖了一系列的主题。

我们将这些数据添加到公共数据集中,以创建一个拥有超过7000亿个标签的大型训练语料库。

动态 | 日本金融厅批准LastRoots成为注册交易所:日本金融厅于11月27日宣布,批准oukeway子公司LastRoots成为虚拟货币交易所。根据金融厅的资料,可处理的虚拟货币只有RYO,该公司表示将继续以扩大该交换所的交易量为目标,同时致力于扩大oukeway“感谢经济”平台的规模。[2019/11/27]

使用这个训练语料库的一部分,我们训练了一个具有彭博风格的,达500亿参数的模型,该模型是根据Hoffmann和LeScao等人的指导方针设计,基于通用和金融业务的场景进行混合模型训练。

结果表明,我们的混合训练方法使我们的模型在金融任务上的表现大大超过了现有的模型,而在通用场景上的表现则与之相当甚至优于现有模型。

声音 | 媒体:区块链赋能金融行业SaaS解决方案 打造科技助贷新模式:据中国经济新闻网报道,近年来,作为云服务三大类型之一,SaaS已经被纳入到众多企业软件供应商的交付策略中,而越来越多的企业也更倾向于选择快捷、安全、省心的SaaS云服务。随着区域链技术的应用发展,将区域链的分布式存储、不可篡改、时间戳验证等底层技术引入SaaS服务中,可为金融服务流程中的各参与方有效建立互信关系并直接带来业务效率的提升。[2019/11/13]

1.BloombergGPT优势:特定领域模型仍有其不可替代性且彭博数据来源可靠

在论文中,彭博社指出,现阶段,通用的自然语言处理模型可以涵盖许多领域,但针对特定领域模型仍有其不可替代性,因彭博社的大多数应用均为金融领域,着手构建了一个针对金融领域的模型尤其优势,同时可以在通用LLM基准测试上保持竞争力:

除了构建金融领域的LLM外,本文的经验也为其他研究领域的专用模型提供了参考。我们的方法是在特定领域和一般数据源上训练LLM,以开发在特定领域和通用基准上表现优异的模型。

数字金融反欺诈升级:用区块链技术验证供应链金融财报数据:据澎湃财经消息,5月31日,京东金融研究院、中国人民大学金融科技与互联网安全研究中心、中国刑事警察学院联合发布《数字金融反欺诈白皮书》。京东金融供应链金融事业部信用与风险管理部负责人王越国称,用区块链有助于解决欺诈问题,最典型的例子就是报表。现在财务报表是按年记录或者按季度记录的,按年披露的报表经过各种复杂的抽象形成的,但是用区块链这种方法,很多底层都会有痕迹,不可篡改,而且会有相关的时间戳,这为后面的反欺诈工作提供了大量的数据基础。[2018/6/1]

此外,我们的训练数据不同于传统的网络爬取数据,网络上的数据总有重复和错误,但我们的数据来源可靠。

2.BloombergGPT的训练数据集:

BloombergGPT的训练数据库名为FINPILE,由一系列英文金融信息组成,包括新闻、文件、新闻稿、网络爬取的金融文件以及提取到的社交媒体消息。

为了提高数据质量,FINPILE数据集也使用了公共数据集,例如ThePile、C4和Wikipedia。FINPILE的训练数据集中大约一半是特定领域的文本,一半是通用文本。为了提高数据质量,每个数据集都进行了去重处理。

对金融领域的理解更准

报告指出,在金融领域中的自然语言处理在通用模型中也很常见,但是,针对金融领域,这些任务执行时将面临挑战:

以情感分析为例,一个题为“某公司将裁员1万人”,在一般意义上表达了负面情感,但在金融情感方面,它有时可能被认为是积极的,因为它可能导致公司的股价或投资者信心增加。

报告指出,从测试来看,BloombergGPT在五项任务中的四项表现最佳,在NER中排名第二。因此,BloombergGPT有其优势性。

测试一:ConvFinQA数据集是一个针对金融领域的问答数据集,包括从新闻文章中提取出的问题和答案,旨在测试模型对金融领域相关问题的理解和推理能力。

测试二:FiQASA,第二个情感分析任务,测试英语金融新闻和社交媒体标题中的情感走向。

测试三:标题,数据集包括关于黄金商品领域的英文新闻标题,标注了不同的子集。任务是判断新闻标题是否包含特定信息,例如价格上涨或价格下跌等。

测试四:FPB,金融短语库数据集包括来自金融新闻的句子情绪分类任务。

测试五:NER,命名实体识别任务,针对从提交给SEC的金融协议中收集金融数据,进行信用风险评估。

对于ConvFinQA来说,这个差距尤为显著,因为它需要使用对话式输入来对表格进行推理并生成答案,具有一定挑战性。

ChatGPT为彭博点赞

华尔街见闻就这个问题专门询问了ChatGPT,ChatGPT认为BloombergGPT是一项很有意义的技术进步:

它是专门为金融领域开发的一种语言模型,可以更好地处理金融领域的数据和任务,并且在金融领域的基准测试中表现出色。

这将有助于金融从业者更好地理解和应用自然语言处理技术,促进金融科技的发展。同时,BloombergGPT还可以为其他领域的语言模型的发展提供参考和借鉴。总的来说,BloombergGPT是一个有益的技术创新。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

水星链

[0:15ms0-1:176ms