当前,大数据、云计算、物联网、人工智能、区块链等新兴技术不断涌现,数字经济浪潮席卷全球,在新一轮科技革命和产业变革中成为了经济增长的新动能。伴随着数字经济的蓬勃发展,数据,逐渐摆脱原有的简单数字符号,转变为继土地、能源、人口、粮食之后的新一代生产要素,作为现实世界与数字世界的映射窗口,以其所蕴含的巨大价值,成为了数字经济的关键部分。
然而相较于数据应用价值不断被认可,数据隐私问题却日益凸显,用户数据隐私如何保护的问题亟待解决。业内人士认为,隐私计算是解决此问题的“关键之钥”。
近年来,针对隐私计算的主流技术研究如雨后春笋般纷纷涌现,各方从隐私计算某类技术手段出发,探讨技术可行性及现有性能的提升,而系统性的技术研究报告仍凤毛麟角。在此背景下,矩阵元与陀螺研究院撰写,新浪财经、证券日报、深圳市信息服务业区块链协会共同发布《隐私计算技术发展报告》于今日面市,报告从市场与技术两方面对隐私计算进行深入的解析,并从隐私计算发展、主流隐私计算技术介绍、技术项目简介、隐私计算应用场景等多维度展现隐私计算全景,详解隐私计算在数字时代背景下的机遇与挑战。旨在吸引更多的技术爱好者参与到隐私计算的技术交流中,同时让大众对于隐私计算技术有更为清楚的认识,推动隐私计算技术在云计算、物联网、人工智能、区块链中的技术应用。
区块链和隐私计算基础设施技术开发商熠智科技完成千万级人民币天使轮融资:金色财经报道,据北京是海淀区人民政府官网消息,区块链和隐私计算基础设施技术开发商熠智科技完成千万级人民币天使轮融资,投资方是汉能创投。熠智科技通过结合区块链和隐私保护计算等技术,实现数据要素全生命周期隐私保护。核心产品包括自主研发的隐私保护解决方案Fidelius、典枢数据合作平台、联盟区块链系统YeeZChain。[2022/1/13 8:45:08]
以下为报告精华观点:
隐私计算与高新科技融合带来“四大优势”市场前景辽阔
在数字化社会渐行渐近的背景下,隐私计算技术的关键作用正在显现。根据Statista报告显示,2020年全球大数据市场收入规模将达到560亿美元,是2016年的两倍,未来大数据市场将呈现稳步发展的态势,预期增速将达到14%左右。而在2018-2020年的收入预测期,Statista预测每年保持约70亿美元的增长,年均复合增长率约为15.33%。
李广乾:加密、隐私计算等方面的需求将会带动加密技术特别是区块链技术的发展:近日,国务院发展研究中心信息中心研究员李广乾表示,随着5G、人工智能、云计算等技术的不断成熟,世界各国都面临一场深刻的信息技术革命,数字经济已经成为当前最具活力和创新力、辐射最广泛的经济形态。在此背景下,一些重点行业能够获得快速发展的机会。比如,自动驾驶、数字家庭等就备受关注。此外,伴随着数字经济发展,对于隐私保护和跨境数据流动的要求也会有所提升,加密、隐私计算等方面的需求将会带动加密技术特别是区块链技术的发展。(经济日报)[2021/8/11 1:47:24]
资料来源:《大数据白皮书(2019)》
而从隐私计算的主要应用数字身份分析,隐私计算市场规模仍不可小觑。根据情报和市场研究平台MarketsandMarkets 最新报告中指出,2019 年全球数字身份解决方案市场规模达到 137 亿美元,2024 年,该市场预计将增长至 305 亿美元,2019-2024 年预测期内的年复合增长率(CAGR)为 17.3%。
波卡隐私计算平行链Phala正在准备预备主网开发计划:12月13日,波卡上的隐私计算平行链PhalaNetwork发布最新周报,内容显示团队已准备预备主网开发计划。当前全网算力值超过270,000,相当于3857个CPU核心在为Phala提供隐私算力。[2020/12/14 15:07:11]
报告指出隐私计算可与人工智能、区块链、大数据等高新技术相结合,依据具体的应用场景来进行技术选型从而解决实际问题。其带来四大非常显著的优势。
使用:提升个人数据所有权,实现授权机制下的数据使用。
安全:降低企业数据泄漏风险,从根本上解决企业由于直接收集用户信息导致数据泄漏的问题
变现:驱动用户数据变现,满足隐私保护前提下的数据多方共享,并获得相应的经济激励。
流动:促进机构数据流动,打破“数据孤岛”,最大化企业和机构数据的价值。
隐私计算“门派”众多密码学是驱动隐私计算技术的核心引擎
ZB创新智库:实施隐私计算方案是区块链项目升级重要看点:老牌项目以太坊和瑞波均提“隐私计划”, V神提出利用ENS(以太坊域名技术)系统地址隐藏真正接收方的地址,只需要发送方发送一个随机数r到ENS持有者公布的公钥P*r的地址上。Ripple开发部门也提出在瑞波系统加入盲签名实现匿名,增加对STREAM协议的支持。ZB创新智库分析师表示,老牌项目下一代升级的最重要的看点之一就是隐私计算方案的实施,这也将进一步凸显区块链技术在面对当前互联网隐私泄露事件频发,在数据隐私保护方面体现新技术的竞争优势。[2020/4/2]
报告指出从技术理论来看,隐私计算主要分为三大技术路线,即密码学、可信执行环境、联邦学习。
密码学是以安全多方计算(Secure Multi-party Computation)、同态加密(HomomorphicEncryption)、零知识证明(Zero-knowledge Proof)等代表的隐私计算技术。
声音 | 尹航:Phala的隐私计算通过可信硬件实现:11月21日,在《金色深核》线上直播中,Phala Network联合创始人尹航介绍了Phala的隐私计算模型以及\"桥\"如何保证资产安全性。尹航表示,Phala的隐私计算通过可信硬件实现,确切的说我们目前基于Intel SGX。从Intel的第六代CPU开始,每一个CPU内部都包含一块特殊的区域,我们把它称作“安全区”。安全区是硬件层面隔离的,安全区内部署的程序在执行过程中不会被干扰,数据也不会泄露,可以抵御来自操作系统、硬件级别的攻击。因此我们把合约部署在安全区内,可以保证合约的输入、输出,以及执行过程都保密。只有用户权限足够才能解密数据。
另一方面,可信硬件提供了“远程验证”协议,用户不需要特殊硬件,只要让矿工执行合约即可,执行的同时会生成出一份密码学证明,可以被浏览器、手机钱包独立验证。在Phala.Network上,一种资产就是一个合约,代码与ERC20没什么区别,但Phala只允许交易双方解密交易数据,任何第三方都不能看到交易数据。我们会在Phala的机密智能合约中实现Libra的轻客户端轻客户端可以验证来自Libra链的数据,也可以产生并Libra交易,这样就实现了一个转街桥:用户在Libra链上把资产转入到一个锁定合约中,这次转账被pLIBRA合约观测到,就会在pLIBRA端生成对应的跨链资产。
此外,用户可以随时用pLIBRA端的资产,兑换回Libra链上的原生资产。整个过程用户都只和智能合约交互,不用引入第三方,就实现了去中心化的转街桥。未来我们会利用波卡上的桥,以及在自己的链上开发更多的桥,目标是为任何区块链提供隐私计算的能力。[2019/11/21]
可信执行环境(TEE)通过硬件技术来对数据进行隔离保护,将数据分类处理。支持TEE的CPU中,会有一个特定的区域,该区域的作用是给数据和代码的执行提供一个更安全的空间,并保证它们的机密性和完整性。
联邦学习则是近些年新崛起的新兴人工智能技术,在2016年由谷歌最先提出,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多个参与方或多个计算节点之间开展高效率的机器学习。
不可否认的是,隐私计算技术路线虽有差异,但密码学对于隐私计算的影响依旧举足轻重,密码学理论研究成果也影响着隐私计算技术的进展。
数据隐私保护法律日益健全,技术规范是行业发展的必要前提
报告中提到,隐私计算作为一种针对于数据安全的技术,技术复杂度较高,涉及行业较广,数据的治理与规范标准程度是技术的长远发展的关键。
近年来,随着大众对于隐私的重视程度的增强,全球均针对数据隐私保护出台了一系列的法律法规,法律体系呈现日益健全化与规范化。在国际方面,除了大名鼎鼎的《通用数据保护条例》(GDPR)之外,国际标准化组织ISO已经发布了一系列相关的标准和规范,包括ISO/IEC 29100《隐私保护框架》、ISO/IEC 29101《隐私体系架构》、ISO/IEC 29190《隐私能力评估模型》、ISO/IEC 29134《隐私影响评估》、ISO/IEC29151《个人可识别信息保护指南》。
国内方面,2017年施行的《中华人民共和国网络安全法》,强调了对基础设施及个人信息的保护。2018年实施的《信息安全技术个人信息安全规范》,从国家标准层面,明确了企业收集、使用、分享个人信息的合规要求。2020年7月,深圳市司法局出台《深圳经济特区数据条例(征求意见稿)》,作为落实将数据作为生产要素的第一部政府文件,具有极强的标志性意义和极高的价值。而近日,《中华人民共和国数据安全法(草案)》结束征求意见,草案中明确开展数据活动的组织、个人的数据安全保护义务,落实了数据安全保护责任规定支持促进的具体措施。
此外,信通院、电标院等单位也相继主导隐私计算相关标准的制定,包括《基于多方安全计算的数据流通产品技术要求和测试方法》、《区块链隐私计算服务指南》等。
目前,与隐私计算有关的法律法规仍在不断完善中,可以预见,不断优化的顶层设计,逐步规范的技术标准,都将促使隐私计算行业迸发新的活力。
隐私计算产品逐渐进入市场角逐商业应用是关键
报告指出,目前当前市场上已经出现了许多知名的隐私计算类产品或者技术框架,包括矩阵元推出的面向广大AI开发者的隐私机器学习开源框架——Rosetta;蚂蚁金服推出的蚂蚁链摩斯多方安全计算平台;百度推出的基于可信执行环境的通用计算架构——MesaTEE等。
而商业应用是检验产品力的“唯一标准” 隐私计算可在保证原始数据安全隐私性的同时,实现对数据的计算和分析,由于其在多数据流通融合中保护隐私安全的显著效果,隐私计算在政务、金融、医疗、交通、安防等多个行业中均存在广泛的应用场景。
以报告中的医疗健康领域应用为例,通过安全多方计算等隐私保护手段,可以在数据不离开私有域的前提下,完成高效地数据统计分析甚至机器学习。事实上,在生物医疗领域,隐私计算已经逐步落地。在数据联合分析方面,基因组学数据、医学影像数据和临床学数据开始在一些创新项目里被安全可靠地分享和计算。此外,利用隐私计算技术(安全多方计算、代理重加密等)实现病人电子病历的跨域共享,也是目前解决医院数据孤岛痛点的有效方案。
可以预见的是,云计算,移动互联网(物联网),人工智能,区块链,这些技术要素和数据要素一起互相联系并且深度融合,是产业发展的必然趋势。在未来,随着新的隐私相关业务需求的持续引爆,市场不断反馈和表达,隐私信息共享和流通的法律法规体系逐步构建,隐私计算和密码学,将会获得新的推动力,继续演进。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。