作者:?GuillaumeBallet
翻译&校对:?裴奇?&阿剑
来源:以太坊爱好者
账户和合约存储数据的方式是影响以太坊的众多问题之一。以太坊协议选用了MerklePatriciaTree来组织账户及合约数据。尽管这种数据结构在理论上效果很好,但在实际应用中,它带来的问题却比它能够解决的问题多。核心开发者们已经讨论多年,想要把这种数据结构换为二叉树,我将在这篇文章中阐述我对这个问题的看法以及如何实现这种转变。
我所提议的处理方法包括一段时间的过渡期,在这段时间内,网络要同时维护两种树结构。这样做的好处是,转换树结构的过程不会影响链的运行,并且可以确保所有的账户都被转换成了二进制格式。
背景
目前,以太坊的状态树是十六叉制的。十六叉制表示每个节点有16个孩子节点。理论上讲,这种方式挺好的,因为孩子节点多意味着只需要更少的“层”便可存储所有数据。
民盟中央建议加速元宇宙科普和立法:3月4日消息,民盟中央已起草了《关于“元宇宙”技术发展的提案》,并将提交全国政协十三届五次会议。在提案中,民盟中央建议,在科普层面需加速知识传播,法律层面则需加快立法步伐。民盟中央拟提交的提案指出,目前,在新兴网络层面,相关政策法规相对缺失。“元宇宙”在未来将会带动形成全新的网络形态,当遇到突发舆情,全虚拟的环境、场景将更难进行源头追踪、问题疏导。因此建议应尽早加快立法研究,尽快形成与技术、市场发展相适应的治理模式和法律基础,全面提升我国社会治理的水平。建议组织相关部门,针对“元宇宙”相关需求、风险进行立法研究,并尽快发布。此前消息,民进中央拟向全国政协十三届五次会议提交《关于积极稳妥推进元宇宙技术和产业发展的提案》。建议推进元宇宙技术产业发展,建立相关监管治理体系。(华夏时报)[2022/3/4 13:37:12]
例如,下图是用十六叉树表示的键值对?(170,v)。十六进制中,170?记作?0xaa,因此你只需要两层:第一层记录第一个?a,第二层记录第二个?a。
人大附中物理老师李永乐科普拜占庭将军问题和区块链:5月14日,人大附中物理老师、科普视频网红李永乐在其公众号发布视频《拜占庭将军问题是什么?区块链如何防范恶意节点?》。李永乐老师在视频中对拜占庭将军问题和区块链进行了讲解,他表示,拜占庭将军问题本质上指的是,在分布式计算机网络中,如果存在故障和恶意节点,是否能够保持正常节点的网络一致性问题。在近40年的时间里,人们提出了许多方案解决这一问题,称为拜占庭容错法。例如兰波特自己提出了口头协议、书面协议法,后来有人提出了实用拜占庭容错PBFT算法,在2008年,中本聪发明比特币后,人们又设想了通过区块链的方法解决这一问题。区块链通过算力证明来保持账本的一致性,也就是必须计算数学题,才能得到记账的权力,其他人对这个记账结果进行验证,如果是对的,就认可你的结果。与拜占庭问题比起来,就增加了叛徒的成本。[2020/5/14]
人民数字FINTECH推出区块链科普动画:人民日报数字传播发布微博称,人民数字FINTECH出品《趣味科普|区块链动画》。[2020/3/31]
-图1.十六叉树的例子,展示了值v是如何在在对应键0xaa处是存储的。这棵树的键长度只有2个字节,只有沿着0xaa的子树被表现出来了。为了简洁,不相关的子树替换为“...”-
可以看出,上图的树很矮,而且很宽。给定相同的键值对,下图展示了二叉树存储的情形。170?在二叉树中被表示为?10101010。
-图2.与图1相同的键值对,存储在二叉树中。为了简洁,不相关的子树被表示为“...”-
声音 | 上海股交所总经理:区块链想要大规模发展要做好社会科普工作:金色财经报道,上海股交所总经理张云峰表示,区块链当前还处于一个“概念”的阶段,距离成熟应用,影响到百姓的日常生活还有很长的路要走。对于“区块链”和其会带来的社会和经济效果,沈阳应当持审慎的态度。区块链想要大规模发展,一方面要做好这项复杂技术的社会科普工作,加快社会大众对区块链的了解。另一方面,要充分发挥市场的作用,让企业用实实在在的技术创新,赋能实体经济的发展。[2019/11/17]
从图中可见,二叉树要深得多,也窄得多。
以太坊中,每个区块包含一个?stateRoot?字段,这是该块处理完成后表示以太坊全局状态的MPT的树根哈希值。总的来说,这个哈希值是对根节点的16个孩子节点的哈希值所组成的列表作哈希运算得到的。这些孩子节点的哈希值又是孩子的16个孩子节点的哈希值所组成的列表做哈希运算得到的,以此类推。
每次打包交易生成新区块时,矿工都会更新账户树,重新计算根哈希。根哈希存储在新区块的?stateRoot?字段,然后新区块被共识。
声音 | CNBC主持人:加密货币最大的缺点之一就是难以向外行快速科普:CNBC主持人Ran NeuNer近期发推称,加密货币最大的缺点之一就是很难向外行快速解释。当人们要求我向他们解释比特币时,我知道他们至少需要一个小时才能真正理解。[2019/9/10]
-图3.区块头中的状态根字段,指向十六叉树的树根-
问题在于:如果要对所有节点做哈希,重新计算根哈希的时间就太长了,因此,为了计算根节点的哈希,矿工将从数据库中检索?同层节点的兄弟哈希值。虽然后者花费的时间没有前者那么多,这个操作还是很耗时。因为每个哈希都必须从数据库中取出。
在十六叉树中,通常每一层你都需要取出15个兄弟哈希值。在上面那个我构造的例子中,就需要30个哈希值。
尽管二叉树层次更深一点,但在每一层只需要一个兄弟哈希值。在上述例子中,仅仅需要8个哈希值!这就是为什么在实际中二叉树更优。
覆盖层转变方法
不幸的是,转换为二叉树并不简单。需要转换的数据?太多了,执行转换花费的时间将多于15秒的区块生成时间。
除此以外,设想你要翻译一本5000页的书,作者还在不停地告诉你他们对故事做了些修改,并且这些修改会影响你已经翻译过的页……那这个过程就没完没了。转换状态树的格式也是一样的问题:可能你刚完成某个地址的格式转换,用户就使用了该地址,那你又得从头转换一遍。
解决这个问题的办法是增加一个过渡期,过渡期间,在十六叉树基层上建立一棵覆盖树。这棵覆盖树是二叉树格式的,它的作用是保存状态上发生的所有变化,直到基层十六叉树完全转换为二叉树。转换分为3步进行。
第1步——转换
在这种方法下,区块高度为?
H1?时肯定会有?
两个?状态根:一个是“基层”十六叉树状态根,一个是“覆盖层”二叉树状态根。
-图4.转换过程中,区块拥有两个状态根:一个是传统十六叉树的只读根,一个是覆盖二叉树的可读写根-
十六叉树被设置为只读,因此对状态的任何更新都将在覆盖树上进行。
当一笔交易读取或者更新一个账户时,系统首先会搜索覆盖树。如果在覆盖树中找不到账户,接着将会在旧的十六叉树中搜索值。
与此同时,十六叉树在后台进行转换。此时不需要担心值插入的问题,因为所有的改变都会存储在上层的覆盖树中。
第2步——基层树切换
当后台转换过程完成,矿工对外宣告,他们已经准备好用转换结果来替换只读的十六进制基层树根。对状态的读写与步骤1阶段是一样的。
-图5.转换的第二个阶段,矿工在区块头使用转换所得二叉树的树根替换十六叉树根,向网络示意他们已经准备好了-
当足够多的一系列区块对转换所得的二叉基层树根给出了相同的值,意味着大多数矿工都完成了转换,并且认可转换后的树。合并过程则开始。
第3步——合并两棵树
合并过程不断推进:每产生一个新的区块,就从覆盖树上删除n个键,把它们重新插入二叉基层树。此过程一直持续,直到所有的键都从覆盖树上移除。到达这步时,区块头就不再保留覆盖状态树的树根。
整个步骤的核心只有一个:如果交易执行时要写的键存在于覆盖树上,这个键就会从覆盖树上删除,写操作直接在二叉基层树上进行。
下一步
为了估计完成转换所需要的时间,我已经做了一个低转换率的原型系统。我们确信,整个过程花费的时间不会太离谱,也就是说几天时间就够了。我们会随着算法的改进而公布更多细节。
致谢
此提议得益于AlexeyAkhunov、VitalikButerin、AnnaGeorge、SinaMahmoodi、TomaszStanczak以及MartinH.Swende的宝贵意见。
原文链接:https://medium.com/@gballet/ethereum-state-tree-format-change-using-an-overlay-e0862d1bf201
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。