伴随着区块链的技术发展,零知识证明(ZKP,Zero Knowledger Proof)技术先后在隐私和 Layer2 扩容领域得到越来越多的应用,技术也在持续的迭代更新。从需要不同的 Trust Setup 的 ZKP(例如Groth16),到需要一次 Trust Setup 同时支持更新的 ZKP(例如Plonk),再到不需要 Trust Setup 的 ZKP(例如 STARK),ZKP 算法逐渐走向去中心化,从依赖经典 NP 问题,到不依赖任何数学难题,ZKP 算法逐渐走向抗量子化。
我们当然希望,一个不需要 Trust Setup 同时也不依赖任何数学难题、具有抗量子性的 ZKP 算法也具有较好的效率和较低的复杂度(STARK 的证明太大),它就是 REDSHIFT。
Multichain相关EOA地址于10小时前转移大额资产:7月23日消息,链上信息显示,由Multichain CEO Zhao Jun姐姐控制的EOA地址于10小时前在Fantom链上转移大额资产。其中52枚封装比特币、1190万枚DAI、1.3万枚ETH以及6400万枚fUSDT转至0x632开头新地址。此外,此次代币转移所需gas是在12小时前从火必交易平台转入。[2023/7/23 15:53:21]
《REDSHIFT: Transparent SNARKs from List Polynomial Commitment IOPs》,从名字可以可出,它是基于 List 多项式承诺且具有透明性的 SNARK 算法。算法本身和 PLONK 有大部分的相似之处,唯一不同的是多项式承诺的原语不同。下面先简单的通过一张表格来展示 REDSHIFT 和 PLONK 算法的异同之处,具体如下:
数据:最后活跃6-12个月的ETH供应量创5个月新高:金色财经报道,据Glassnode数据显示,最后活跃6-12个月(1d MA)的ETH供应量刚刚达到13,972,630.49ETH,创近5个月新高。[2023/2/19 12:15:17]
因此,只要对 PLONK 算法有深入了解的读者,相信再理解 REDSHIFT 算法,将是一件相对简单的事。ZKSwap团队在此之前已经对 PLONK 算法进行了深入的剖析,我们在文章《零知识证明算法之 PLONK --- 电路》详细的分析了 PLONK 算法里,关于电路部分的详细设计,包括表格里的《Statement -> Circuit -> QAP》过程,并且还详细描述了 PLONK 算法里,关于“Permutation Check”的原理及意义介绍,文章零知识证明算法之 PLONK --- 协议对 PLONK 的协议细节进行了剖析,其中多项式承诺( Polynomial Commitment)在里面发挥了重要的作用:保持确保算法的简洁性和隐私性。
欧洲央行:比特币正在退出市场并接近“无关紧要”:金色财经报道,欧洲中央银行发布了一篇名为“比特币的背水一战”的博客,详细介绍了世界第一数字货币的衰落。有趣的是,该银行并未将 FTX及其 11 月的崩盘作为比特币表现如此糟糕的原因。相反,它暗示比特币早在公司开始被遗忘之前就已经走上了毁灭性的道路。该博客还表示,比特币的概念设计和技术缺陷使其作为一种支付方式受到质疑。真正的比特币交易繁琐、缓慢且昂贵。比特币从未在任何显着程度上用于合法的现实世界交易。比特币也不适合作为投资。它不产生现金流(如房地产)或股息(如股票),不能用于生产性用途(如商品)或提供社会效益(如黄金)。因此,比特币的市场估值完全基于投机。[2023/1/9 11:01:37]
我们知道,零知识证明算法的第一步,就是算术化(Arithmetization),即把 prover 要证明的问题转化为多项式等式的形式。如若多项式等式成立,则代表着原问题关系成立,想要证明一个多项式等式关系是否成立比较简单,根据 Schwartz–Zippel 定理可推知,两个最高阶为 n 的多项式,其交点最多为 n 个。
消息人士:推特或将推出Twitter Coin打赏功能:12月5日消息,知名科技博主Jane Manchun Wong在推特上披露,推特疑似隐藏了一项Twitter Coin的代币打赏新功能,该功能可在功能列表中启用,代币图标是金色的推特logo。根据其分享的截图,推特上有一个“Tips设置”,点击后进入“Coin Placeholder”页面。[2022/12/5 21:23:41]
换句话说,如果在一个很大的域内(远大于 n)随机选取一个点,如果多项式的值相等,那说明两个多项式相同。因此,verifier 只要随机选取一个点,prover 提供多项式在这个点的取值,然后由 verifier 判断多项式等式是否成立即可,这种方式保证了隐私性。
然而,上述方式存在一定的疑问,“如何保证 prover 提供的确实是多项式在某一点的值,而不是自己为了能保证验证通过而特意选取的一个值,这个值并不是由多项式计算而来?”为了解决这一问题,在经典 snark 算法里,利用了 KCA 算法来保证,具体的原理可参见 V 神的 zk-snarks 系列。在 PLONK 算法里,引入了多项式承诺(Polynomial Commitment)的概念,具体的原理可在“零知识证明算法之 PLONK --- 协议”里提到。
简单来说,算法实现了就是在不暴露多项式的情况下,使得 verifier 相信多项式在某一点的取值的确是 prover 声称的值。两种算法都可以解决上述问题,但是通信复杂度上,多项式承诺要更小,因此也更简洁。
下面将详细介绍 REDSHIFT 算法的协议部分,如前面所述,该算法与 PLONK 算法有很大的相似之处,因此本篇只针对不同的部分做详细介绍;相似的部分将会标注出来方便读者理解,具体如下图所示:
协议的 1-6 步骤在 PLONK 的算法设计里都有体现,这里着重分析一下后续的第 7 步骤。
在 PLONK 算法里,prover 为了使 verifier 相信多项式等式关系的成立,由 verifier 随机选取了一个点,然后 prover 提供各种多项式(包括 setup poly、constriant ploy、witness poly)的 commitment,由于使用的 Kate commitment 算法需要一次 Trust Setup 并依赖于离散对数难题,因此作为 PLONK 算法里的子协议,PLONK 算法自然也需要 Trust Setup 且依赖于离散对数难题。
在 REDSHIFT 协议里,多项式的 commitment 是基于默克尔树的(简单讲,计算多项式在域 H 上的所有值,并当作默克尔树的叶子节点,最终形成的根,即为 commitment)。若 prover 想证明多项式在某一个或某些点的值,证明方只需要根据这些值插值出具体的多项式,然后和原始的多项式做商并且证明得到商也是个多项式(阶是有限制的)即可。
当然为了保护隐私,需要对原始多项式做隐匿处理,类似于上图协议中的第一步。在实际设计中,为了方便 FRI 协议的运行,往往设计原始多项式的阶 d = 2^n + k (其中 k = log(n))。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。